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This article surveys published research on a class of supply-chain management problems we 
call Joint Transportation-and-Inventory Problems (JTIPs).  These problems are characterized 
by the presence of both transportation and inventory considerations, either as policy-variables 
or constraints.  We define the general JTIP and classify 49 contemporary JTIP papers (i.e., 
mostly published since 1990).  We also suggest problems that deserve further research and 
possible ways to solve them. 

 
 

The set of supply-chain management problems surveyed and classified in this article are 

characterized by the presence of two management concerns: transportation policy and inventory 

policy.  “Transportation” involves activities related to the physical movement of goods between 

different geographic points.  “Inventory” is concerned with characteristics of the goods being 

transported, such as demand, required service level, replenishment policies, etc..  Henceforth, 

these problems are labeled “Joint Transportation-and-Inventory Problems” (JTIPs). 

In order to identify contemporary research, we searched the following journals between 1990 

and 2003: Management Science, Operations Research, Transportation Science, Transportation 

Research, European Journal of Operations Research, Journal of Business Logistics, Annals of 

Operations Research, etc..  We also did a citation search of the articles cited by these published 

papers.  Some JTIP working papers are also included. 

Our interest in developing this survey stemmed from our interest in working on what we 

initially thought was “only” a supply-chain (i.e., inventory) management model.  Once we 

became aware of what we now call the JTIP literature, we were surprised that there was no 

corresponding survey.  So, providing a survey for others was our first motive.  We also want to 
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attract the interest of other researchers, first, because of the interesting technical challenges JTIPs 

pose and; second, because of the potential for successful models to provide significant savings in 

real-world applications. 

Since the early 1980’s, joint transportation-inventory policies have been successfully 

implemented in many industries.  Bell, et al., (1983) described an on-line, computerized routing-

and-scheduling optimizer, developed for a manufacturer of liquid oxygen and nitrogen.  Their 

project involved scheduling a fleet of vehicles that make bulk deliveries stored at a central depot 

to a set of customer locations.  Their optimizer reportedly reduced vehicle-operating costs 6-10%.  

Golden, et al. (1984) used a simulation model to investigate the interaction between 

transportation and inventory decisions for a large energy-products company.  They reported that 

the system, which jointly managed transportation and inventory, produced a 8.4% improvement 

in gallons/hour delivered, reduced stockouts by 50%, and total cost by 23%. 

Theoretical studies have also demonstrated that significant savings can be realized when 

transportation and inventory concerns are considered jointly.  Federgruen and Zipkin (1984) 

incorporated inventory costs into a single-depot vehicle-routing model, and compared the 

solutions for their JTIP with those of the pure vehicle-routing problem.  Their results showed that 

about 6-7% savings in operating costs can be achieved by using the joint approach.  Dror and 

Ball (1987) considered a JTIP for distributing heating oil to customers with the objective of 

minimizing the annual delivery and shortage costs.  Computational results showed that their 

approach provided a more than 50% increase in performance (measured in units/hour delivered) 

over the “manual” rules in use at the time of the study, and a more than 25% increase in 

performance over another existing system. 
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Finally, JTIPs pose both interesting and challenging technical problems.  From a 

transportation modeling perspective, for example, JTIPs imbed inventory considerations into the 

traditional vehicle-routing problem, which is already known to be NP-hard.  And, from an 

inventory-modeling perspective, JTIPs add delivery leadtimes as decision variables to multiple-

location inventory models, which are already known to be very difficult to optimize even with 

fixed leadtimes.   

What follows is organized as follows.  In Section 2, we describe JTIPs and formulate the 

corresponding general optimization problem.  Section 3 provides a classified bibliography.  More 

detailed summaries on JTIP papers are given in Section 4.  Section 5 takes a look into the future 

by describing several problems for further research.   

1.  The JTIPs  

JTIPs involve managing the activities of supplying (one or more) products from (one or more) 

geographically-dispersed origins, henceforth called depots, to (one or more) geographically-

dispersed destinations, henceforth called retailers/customers (we will use “retailer” and 

“customer” interchangeably), with a (limited or unlimited) fleet of M capacitated or 

uncapacitated vehicles during some (finite or infinite) planning horizon of length H.  All 

inventory enters the system through the depot(s).  The point-to-point travel distances or times are 

typically fixed and known.  Each retailer experiences deterministic or stochastic external demand 

on its inventory.  The depot may hold inventory or not.  Decision-making may be centralized or 

decentralized. 

By definition, JTIPs involve two sets of management concerns:  those related to 

transportation policy and those related to inventory policy.  Transportation policy includes, but is 
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not limited to, the assignment of vehicles to routes and/or customers, vehicle-capacity constraints, 

the sequencing of customers on routes, and customer delivery time-windows.  Inventory policy 

includes, but is not limited to, determining system (i.e., depot) replenishments, rules for filling 

customer orders/demands, and allocating vehicle inventory among customers.  As we shall see, 

both of these policies are represented in a given model either as decision variables or as 

constraints.  See Section 4 for more details. 

Let I be a vector specifying the inventory policy/ies under consideration, and let T be a vector 

specifying the transportation policy/ies under consideration.  Let C I  represent the cost in 

period t, t = 1,…,H, associated with any given joint policy: {I, T}

( , )t T

t=1,…,H.  Then, the general JTIP 

can be formulated as: 

 JTIP: Minimize w.r.t. I, T {∑t = 1,…,H C I( , )t T } (1) 

 Subject to 

 I ∈Ω (2) 

 T π∈  (3) 

The objective is to minimize the total (expected) cost (or average (expected) cost/time, in some 

cases) over the planning horizon H.  In some cases, a profit or cash flow maximizing objective 

replaces (1).  Inventory policy, I, is constrained to be chosen from some given set Ω  and 

transportation policy, T, is constrained to be chosen from some given set π .  In addition, in 

multi-period JTIPs, there are typically constraints (e.g., inventory balance constraints, vehicle in-

route constraints) that link the result(s) of one period’s policies to that of others. 

Finally, some JTIPs either consider a single, given, transportation policy, in which case 

 in (1) is replaced by ( , )tC I T (t T )C I ; or a single, given inventory policy, in which case 

 in (1) is replaced by ( , )tC I T ( )ItC T .   
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2.  Literature Classification 

Table 2 provides our classification of the JTIP literature, listed in alphabetical order by author(s).  

Table 1 lists the categories and the abbreviations used in Table 2.  Complete citations are in the 

references.  In what follows, we describe the categories and their sub categories. 

Table 1: Categories and Abbreviations 

IRP – Inventory-Routing Problem 
SIRP – Strategic Inventory-Routing Problem 
IRPSF – Inventory-Routing Problem with Satellite Facilities 
VRP – Vehicle-Routing Problem 
SRP – Ship-Routing Problem  
IAP – Inventory-Allocation Problem 
DDP – Delivery-Dispatching Problem 

Subject 

O – Other 
F – Finite Horizon 
I – Infinite 
P – Periodic-Review system Periodic/Continuous 

Review C – Continuous-Review system 
L – Limited  Number 
U – Unlimited 
C – Capacitated 

Vehicle 
Capacity U – Uncapacitated 
S – Single Product Product  
M – Multiple Product 
D – Deterministic Orders/Demands 
S – Stochastic 
Ret. Sel. – Retailer Selection 
Ret. Grou. – Retailer Grouping Assignment* 
Veh. Assign. – Vehicle Assignment 
S – Static Routing Policy 
D – Dynamic 
S – Static Allocation Policy 
D – Dynamic 
Joint – Joint transportation-inventory policy 
Transpo.  – Transportation policy Policy Variable/s 
Inv. – Inventory policy 

*The three types listed in this category are not mutually exclusive. 
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 Subject:  Subject is divided into seven categories: The Inventory-Routing 

Problem (IRP) and the IRP with Satellite Facilities (IRPSF) deal with 

tactical JTIP activities (e.g., routing an existing fleet of vehicles to visit 

the retailer; deciding the optimal timing and delivery quantity for every 

visit to each retailer).  The SIRP, on the other hand, is motivated by the 

long lead times (say months or even years) between the signing of 

purchase or lease agreements and the availability of vehicle(s) for 

delivery operations.  The SIRP deals with resource-planning decisions 

where, for example, the objective is to minimize the size (or cost) of the 

vehicle fleet required to transport product(s). The Vehicle-Routing 

Problem (VRP), strictly speaking, is not a JTIP, but is a topic with a 

long history that, in a sense, sets the stage for JTIPs.  We provide a brief 

overview in Section 4.  The Ship-Routing Problem (SRP), which can 

be viewed as a multi-depot JTIP, involves the design of a set of routes 

for a fleet of heterogeneous ships servicing a set of production and 

consumption harbors for a single product (note that no depot is 

involved).  The quantities loaded and discharged are determined by the 

production and consumption rates of the harbors, possible stock levels, 

and the ship visiting the harbor.  The Inventory-Allocation Problem 

(IAP) assumes that the routes traveled by the vehicles are predetermined 

and deals only with how to allocate the inventory to the retailers.  The 

Delivery-Dispatching Problem (DDP) involves assigning vehicles to 
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“itineraries”, i.e., sets of predetermined customers with fixed delivery 

quantities, at the minimum cost. 

 Horizon:  The planning horizon in the JTIP can be either Finite or Infinite.  Most 

JTIP models involve only a single planning period.  

 Review:  Periodic-Review models divide time into one or more discrete time 

periods.  Correspondingly, information is provided and decisions are 

made and implemented periodically.  Continuous-Review models 

represent information, decision-making and implementation events in 

continuous time. 

 Vehicle:  The vehicles used to transport product(s) can be Capacitated, in the 

amount of the commodity/ies they can transport at any given time, or 

Uncapacitated, and identical (i.e., same capacity and same operating 

cost) or not.  The number of vehicles can be Limited or Unlimited. 

 Product:  Although most of the JTIP literature considers the distribution of only a 

Single Product, some models incorporate Multiple Products.  

 Orders/Demands:  In some JTIPs, the retailers are viewed as the end customers with either 

Deterministic (i.e., fixed and known) or Stochastic (i.e., random 

variables with know probability distributions) orders.  In other JTIPs, the 

retailers serve customers whose demands are deterministic or stochastic.  

In the latter case, the JTIP incorporates the inventory-replenishment 

policy of the retailer.  Demand distributions can be either i.i.d. across the 

retailers or retailer specific.  Similarly, when multiple products are 
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considered, their order/demand distributions can be identical or product 

specific. 

              Assignment:   Retailer Selection involves determining the retailers to be visited each 

time the vehicle(s) leave the depot.  Retailer Grouping involves 

assigning retailers to sets, sometimes called regions, which are then 

managed independently.  Vehicle Assignment means assigning the 

retailers to vehicles, vehicles to routes, or limited vehicle space to 

different products. 

 Routing Policy:  Two types of routing policies (i.e., the sequencing of visits to the 

retailers on each route) are modeled in literature.  Static Routing means 

that a route is always the same whenever the same set of retailers is 

visited by a single vehicle.  Direct delivery (i.e., each retailer is visited 

independently by dedicated route) is a special case of static routing.  

Dynamic Routing permits the route to the same set of retailers to 

change over time, depending on the status of the system. 

 Allocation Policy:  Some JTIPs incorporate the allocation of vehicle inventory, either 

because total retailer orders exceed the amount available on the vehicle 

or because the inventory policy is constrained to have the vehicle return 

to the depot empty.  Under Static Allocation the amount of vehicle 

inventory to be allocated to the retailers is determined simultaneously, 

usually when the vehicle(s) leave the depot, and fixed thereafter.  Under 

Dynamic Allocation these quantities are determined sequentially, based 

on the status of the system at the time of delivery to each retailer. 
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 Policy Variable:  Joint means that the model is attempting to jointly optimize inventory 

and transportation policy, as in (1) – (3) above.  Transportation Policy 

means that the model determines transportation policy for a given 

inventory policy.  Inventory Policy means that the model determines 

inventory policy for a given transportation policy. 
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Table 2: A Classification of Contemporary JTIP Literature 
 

No.  Author Year Subject Horizon  Review Vehicle 
No.    Capacity Product Orders/Demands Assignment Routing 

Policy 
Allocation 

Policy 
Policy 

Variable Objective Solution & Method 

1 Adelman 2001 Other I P U C M S, Product specific Retailer 
selection N.A. Static 

allocation Joint  Min cost
Markov-decision process, 

linear programming, 
heuristic 

2       Anily 1994 Other I C U C/U 
(idenical) S D (constant), 

Retailer specific 
Retailer 
grouping 

Static 
routing 

Static 
allocation Joint Min cost Heuristic and lower bound 

3 Anily and 
Federgruen 1990       IRP I P U C 

(identical) S D (constant), 
Retailer specific 

Retailer 
grouping 

Static 
routing 

Static 
allocation Joint Min cost Heuristics, lower and 

upper bounds 

4 Anily and 
Federgruen 1993       IRP I P U C 

(identical) S D (constant), 
Retailer specific 

Retailer 
grouping 

Static 
routing 

Static 
allocation Joint Min cost Heuristics, lower and 

upper bounds 

5 Bard, et al.   1998 IRPSF F P L C 
(identical) S S, Retailer specific Retailer 

selection 
Dynamic 
routing N.A.    Transpo. Min cost Heuristics

6 
Barnes-
Schuster and 
Bassok 

1997     IRP I P U C 
(identical) S S, Retailer specific N.A. Direct 

delivery
Static 

allocation N.A. 
Evaluate 
strategy 

effectiveness
Lower bound 

7 Bassok and 
Ernst 1995       IAP I P L C M S, Retailer specific

/Product specific 
Vehicle 

assignment  
Static 

routing 
Dynamic 
allocation Inv. Max profit Dynamic programming 

8 Bell, et al.   1983 IRP F P L C S D Vehicle 
assignment 

Dynamic 
routing 

Static 
allocation Joint Max profit Integer programming 

9 Berman and 
Larson 2001        IAP F P Single C S S, Retailer specific N.A. Static 

routing 
Dynamic 
allocation Inv. Min cost Stochastic dynamic 

programming 

10 Bertazzi, et al.   2000 Other I P U C (non-
identical) M D, Product specific Vehicle 

assignment 
Direct 

delivery
Static 

allocation Inv.   Min cost Heuristic

11 Bertazzi, et al.   2002 IRP F P Single C M D, Retailer specific Retailer 
selection 

Dynamic 
routing N.A.    Transpo. Min cost Heuristic

12 Blumenfeld,  
et al.   1985          Other F C U C S D Vehicle 

assignment 
Static 

routing.
Static 

allocation Joint Min cost Analytical results and 
heuristic 

13 Burns, et al.   1985 Other F C U C S D (constant), same 
across retailers 

Retailer 
grouping N.A. N.A. Transpo. Min cost Theoretical analysis 

14 Campbell, et al. 1997 IRP F/I C/P L C 
(identical) S D/S, 

Retailer specific 
Retailer 
selection 

 Static 
routing 

Static 
allocation Joint  Min cost

Integer Programming, 
stochastic Programming, 

heuristics 

15 Cetinkaya and 
Lee 2000        Other I P Single C S S, i.i.d. across 

retailers N.A. N.A. Static 
allocation Joint Min cost Renewal-theoretic model 

16 Chan and 
Simchi-Levi 1998     Other I C U C (non-

identical) S D (constant), 
Retailer specific 

Retailer 
grouping 

 Static 
routing 

Static 
allocation Joint Min cost Bounds and heuristic 

17 Chan, et al.   1998 IRP I P U C S D, Retailer specific Retailer 
grouping 

 Static 
routing 

Static 
allocation Joint Min cost Analysis and heuristic 
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Table 2: A Classification of Contemporary JTIP Literature – Continued 
 

No.  Author Year Subject Horizon  Review Vehicle 
No.    Capacity Product Orders/Demands Assignment Routing 

Policy 
Allocation 

Policy 
Policy 

Variable Objective Solution & Method 

18 Chien, et al.   1989 IRP F P L C (non-
identical) S D, Retailer specific Vehicle 

assignment 
Dynamic 
routing 

Static 
allocation Joint  Max profit

Mixed integer 
programming, heuristic, 

and upper bound 

19 Christiansen     1999 SRP F N.A. L C (non-
identical) S D, Harbor specific Vehicle 

assignment 
Dynamic 
routing 

Static 
allocation Joint Min cost Decomposition, integer 

programming 

20 Christiansen 
and Nygreen 

1998
a SRP      F N.A. L C (non-

identical) S D, Harbor specific Vehicle 
assignment 

Dynamic 
routing 

Static 
allocation Joint Min cost Mixed integer 

programming 

21 Christiansen 
and Nygreen 

1998
b SRP      F N.A. L C (non-

identical) S D, Harbor specific Vehicle 
assignment 

Dynamic 
routing 

Static 
allocation Joint Min cost Decomposition, dynamic 

programming 

22 Dror and Ball 1987 IRP F P L C S S, Retailer specific Ret. selec./ 
Veh. Assign. 

Static 
routing N.A.   Transpo. Min cost Analytical results and 

heuristic 

23 Dror and 
Trudeau 1996       IRP F C U C S D/S, Single retailer N.A. Direct 

delivery

Static/ 
Dynamic 
allocation 

Inv. Optimize cash 
flow Analytical research 

24 Dror, et al.   1989 VRP F P L C 
(identical) S S, Retailer specific N.A. Static 

routing 
Dynamic 
allocation Transpo. 

Min distance 
traveled by the 

vehicle. 

Stochastic Programming, 
Markov-decision process 

25 Dror, et al.   1985 IRP F P L C S S, i.i.d. across 
retailers 

Retailer 
selection 

Static 
routing 

Static 
allocation Transpo.  Min cost Integer programming, 

decomposition 

26 Federgruen and 
Zipkin 1984       IRP F P L C (non-

identical) S S, Retailer specific Vehicle 
assignment 

Dynamic 
routing 

Static 
allocation Joint Min cost Nonlinear integer 

programming 

27 Fisher, et al.   1982 VRP I P L C (non-
identical) S  D Vehicle 

assignment 
Static 

routing 
Static 

allocation Transpo. Min cost Integer programming 

28 Fumero and 
Vercellis 1999         Other F P L C M D, Retailer specific

/Product specific N.A. Dynamic 
routing 

Static 
allocation Joint Min cost

Mixed integer 
programming, heuristic, 

and lower bound 

29 Gallego and 
Simchi-levi 1990     Other I C U C 

(identical) S D (constant), 
Retailer specific N.A. Direct 

delivery N.A. N.A. Min cost Heuristic and lower bound 

30 Gaur and 
Fisher 2002 IRP I P U C S D, Retailer specific Retailer 

grouping 
Static 

routing 
Static 

allocation Joint  Min cost
Nonlinear integer 

programming, heuristic 
algorithm 

31 Golden, et al.   1984 IRP I P L U S S, Retailer specific Ret. selec./ 
Veh. Assign. 

Dynamic 
routing 

Static 
allocation Joint  Min cost Heuristic, decomposition, 

and simulation 

32 Herer and Levy 1997 IRP F    P U C S S, Retailer specific Retailer 
selection 

Dynamic 
routing 

Static 
allocation Transpo. Min cost Heuristic

33 Herer and 
Roundy 1997        Other I P Single U S D (constant), 

Retailer specific 
Retailer 
selection 

Static 
routing 

Static 
allocation Joint Min cost Heuristics and dynamic 

programming 
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Table 2: A Classification of Contemporary JTIP Literature – Continued 

No.  Author Year Subject Horizon  Review Vehicle 
No.    Capacity Product Orders/Demands Assignment Routing 

Policy 
Allocation 

Policy 
Policy 

Variable Objective Solution & Method 

34 Jaillet, et al.   2002 IRPSF F/I P L C S S, Single retailer   N.A. N.A. Dynamic 
allocation Transpo. Min cost Analytical research 

35 Jones and Qian 1997 Other I C U C 
(identical) S D (constant), 

Retailer specific N.A. Direct 
delivery N.A. N.A. Min cost Analytical research 

36 Kleywegt, et al. 2002
a IRP I P L C S S, Retailer specific N.A. Direct 

delivery
Static 

allocation Joint  Max profit Markov-decision process 
and heuristic 

37 Kleywegt, et al. 2002
b IRP      I P L C 

(identical) S S, Retailer specific Retailer 
selection 

Dynamic 
routing 

Static 
allocation Joint Max profit Markov-decision process 

and heuristic 

38 Kumar, et al.   1995 IAP I P Single U S S, Retailer specific N.A. Static 
routing 

Static/ 
Dynamic 
allocation 

Inv.   Min cost Optimal

39 Larson        1988 SIRP I P L C 
(identical) S S, Retailer specific N.A. N.A. N.A. N.A. Min cost Heuristic

40 Minkoff  1993 DDP I P U U S S, Retailer specific Vehicle 
assignment 

Static 
routing 

Static 
allocation N.A.  Min cost Markov-decision process 

and heuristic 

41 Park, et al.    2002 IRP I P Single U S S, i.i.d. across 
retailers N.A. Dynamic 

routing 
Dynamic 
allocation Joint  Min cost Heuristic and analytical 

results. 

42 Qu, et al.   1999 IRP I P Single U M S, Product specific Retailer 
selection 

Dynamic 
routing 

Static 
allocation Joint Min cost Heuristic and lower bound 

43 Reiman, et al.   1999 IAP I P Single C S S, Retailer specific N.A. 

Direct 
delivery/

Static 
routing 

Static/ 
Dynamic 
allocation 

Inv.  Min cost Queuing control theory 
and heavy traffic analysis 

44 
Savelsbergh 
and 
Goetschalckx 

1995        VRP F P L C 
(identical) S S, Retailer specific Vehicle 

assignment 
Static 

routing 
Dynamic 
allocation Transpo. Min cost Heuristic

45 Shen, et al.   2003 Other F N.A. N.A. N.A.     S S, Retailer specific N.A. N.A. N.A. N.A. Min cost Nonlinear integer 
programming 

46 Trudeau and 
Dror 1992 IRP F P L C S S, Retailer specific Retailer 

selection 
Dynamic 
routing 

Dynamic 
allocation Transpo.   Min cost Heuristic

47 Tyworth     1992 Other N.A. P Single N.A. S S, Single retailer N.A. Direct 
delivery N.A. Inv. Min cost Framework

48 Viswanathan 
and Mathur 1997        IRP I P U U/C 

(identical) M D, Retailer specific
/Product specific 

Vehicle 
assignment N.A. Static 

allocation Joint Min cost Heuristic

49 Webb and 
Larson 1995     SIRP I P L C 

(identical) S 
S, i.i.d across 

periods, but retailer 
specific. 

N.A.    N.A. N.A. N.A. Min fleet size Heuristic 
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3.  Review of Problems and Models 

As background, we will first briefly describe the Vehicle-Routing Problem (VRP).  Interested 

readers should refer to the classification of Bodin and Golden (1981) or, more recently, Anily 

and Bramel (1999) for an examination of the VRP in the context of supply-chain management.   

In its simplest form, the VRP is a single-period problem in which a fleet of M ( ≥ ) identical 

vehicles make deliveries from a single depot to a set of N ( 1≥ ) retailers. Retailer orders are 

assumed to be known.  The objective is to assign retailers to vehicles and; then, for each vehicle, 

determine a route originating from and terminating at the depot, such that (i) each retailer is 

visited exactly once; (ii) each retailer’s order is filled; (iii) vehicle-operating constraints (e.g., 

vehicle capacity constraints) are satisfied; and (iv) total transportation distance (or cost) is 

minimized.  The VRP ignores inventory-related decisions and their associated costs.  Delivery 

quantities are constrained to exactly equal the corresponding retailer orders.  Within the context 

of the JTIP, given any set of delivery quantities for each retailer, VRP procedures could be 

applied to assign vehicles to retailers and routes to vehicles.  

1

By definition, JTIPs consider both transportation policy and inventory policy.  However, how 

these policies are considered varies considerably, depending on how the specific JTIP is 

formulated.  Problem (1)-(3) in section 2 is the most general JTIP.  This form of JTIP considers 

transportation and inventory as joint policy variables.  Section 4.3 will review this literature.  

Some JTIPs consider transportation policy under a single, given inventory policy.  Section 4.1 

reviews this literature.  Other JTIPs consider the inventory policy under a single, given 

transportation policy.  They will be reviewed in section 4.2.  Finally, a few JTIPs do not fall into 

any of these categories.  They will be reviewed in Section 4.4. 
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3.1  Transportation Policy under a Given Inventory Policy 

The models reviewed in this section consider only a single, given inventory policy, I, in solving 

(1)-(3), in which case C I  in (1) is replaced by ( , )t T (t I )

s S S

C T .  For example, Dror, et al. (1985, 

1989), Herer and Levy (1997), Bard, et al. (1998), and Jaillet, et al. (2002) all assume that the 

retailers follow ( , ) policies; i.e., the vehicle fills up retailer i to full capacity, , whenever it 

makes delivery to that retailer.  These models first identify the retailers to be visited (by 

reviewing the retailers’ inventory position, etc.) and; then, solve (1) by combining these retailers 

into one or more routes, and assigning a vehicle to each route.  Some models employ static 

routing, others employ dynamic routing.  Some of the models in this group assume deterministic 

demand (Section 4.1.1); others, stochastic demand (Section 4.1.2).  Eleven of the 49 papers 

reviewed are in this group.   

i i i

3.1.1  Models with Deterministic Demand 

JTIPs in this subgroup assume demand is known (either stationary or non-stationary), and 

generally assume that this demand must be satisfied (i.e., no backorders or lost sales).  Typically, 

the depot holds no inventory.   

Bertazzi, et al. (2002) consider a periodic-review, multi-product JTIP with a given inventory 

policy.  The inventory policy, I, is restricted to a type such that each retailer has a given a 

minimum and a maximum level of the inventory for each product; and each retailer must be 

visited before any of its inventories reach the minimum level.  Further, every time a retailer is 

visited, the quantities delivered are such that the prespecified maximum levels are reached for 

each product. The problem is to determine for each discrete time period the retailers to be visited 

and the route of the vehicle.  Their heuristic first determines a feasible set of delivery time 
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periods for each retailer to be visited and; then, given these, retailers are inserted in a route. The 

goal is to minimize the sum of transportation and inventory costs.   

Other models in this subgroup are Fisher, et al. (1982) and Burns, et al. (1985). 

3.1.2  Models with Stochastic Demand 

In this subgroup, customer demands are retailer specific and stochastic; i.e., are represented by a 

set of random variables with known probability distributions.  Since demand is uncertain, these 

models all address the possibility of customer demand exceeding supply (e.g., expediting, lost 

sales).    

Dror, et al. (1985) consider a stochastic IRP over an annual horizon, in which I is a given (s, 

S) policy.  In their model, the retailers’ daily demands are assumed to be drawings from i.i.d. 

normal distributions with known parameters.  Their problem is formulated as a two-stage integer 

program that, first, determines the delivery time for each retailer and; then, schedules customer 

delivery by route, vehicle, and day of the week. 

In a companion paper, Dror and Ball (1987) reduce the annual problem to a shorter planning 

horizon (m-day) problem.  The key in doing so is to define short-term costs that reflect the long-

term costs.  This problem is modeled as a mixed-integer program, in which the effects of current 

decisions on later periods are accounted for by penalty or incentive factors.  In their problem, I is 

restricted to the inventory policy that maintain a specified minimum inventory level at each 

retailer.   

Trudeau and Dror (1992) address a similar stochastic IRP, and employ a retailer-selection 

submodel, in which the retailers are divided into two sets: retailers that must be replenished 

during the short planning period and retailers that might be replenished because of special 
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consideration.  They formulate the problem as a mixed-integer program, and develop heuristics 

for solving (1) – (3).  

Bard, et al. (1998) and Jaillet, et al. (2002) examine an IRP with Satellite Facilities (IRPSF), 

and both models assume that the retailers follow ( , ) policy.  In the single-product, periodic 

model considered by Bard, et al., both the depot and the satellite facilities hold an unlimited 

supply of the product, and vehicles can reload at any of these locations.  However, all vehicle 

routes must originate from and terminate at the depot.  They solve this IRPSF using a two-week 

rolling-horizon heuristic.  More specifically, for a given two-week horizon, they first use a 

retailer selection, i.e., identify the retailers to be visited.  However, only retailers scheduled for 

the first week are routed.  The two-week planning horizon is then rolled forward by a week and 

the process is repeated.  Jaillet, et al. (2002) also reduce the IRPSF from the annual horizon to a 

biweekly rolling planning-horizon problem, and provide the main justifications behind the 

retailer selection as well as the justifications behind the derivations of the incremental costs as 

used in the two-week rolling horizon heuristic of Bard, et al. (1998).   

s S

Savelsbergh and Goetschalckx (1995) examine the question of whether static routing is a 

viable alternative to dynamic routing.  They consider managing a single-depot, multi-retailer, 

stochastic distribution system over a finite horizon under periodic review.  The depot serves the 

retailers with a set of vehicles having identical capacities.  The retailer inventory policy, I, is 

assumed to be a base-stock policy.  The objective is to minimize the total transportation cost plus 

the “recourse” cost (a cost associated with service failure).  Their numerical studies show that the 

cost increase caused by static routing was small (less than 10%) compared to dynamic routing.  

Hence, taking into consideration the possible advantages of static routing policy (e.g., increased 

performance by the drivers because they become more familiar with static routes over time, 
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increased performance at the facility, decreased management costs), Savelsbergh and 

Goetschalckx argue that static routing might be an attractive alternative to dynamic routing.   

Other stochastic JTIP papers in this subgroup are Dror, et al. (1989) and Herer and Levy 

(1997). 

3.2  Inventory Policy under a Given Transportation Policy 

The models reviewed in this section consider only a single, given transportation policy, T, in 

solving (1)-(3), in which case C I  in (1) is replaced by ( , )t T (t T )C I .  In determining inventory 

policy, both static allocation and dynamic allocation policies have been modeled.  Note that by 

postponing allocation, dynamic allocation provides risk-pooling of the inventory on the 

vehicle(s).  Everything else being equal, this improves system performance.  Seven of the 49 

papers reviewed are in this group.  Some of the models in this group assume deterministic 

demand (Section 4.2.1); others, stochastic demand (Section 4.2.2). 

3.2.1  Models with Deterministic Demand 

Bertazzi, et al. (2000) consider a multi-product, one-to-one (i.e., single depot and single retailer) 

distribution system.  The given transportation policy is direct delivery under a given, discrete set 

of shipping frequencies.  The objective is to decide how much of each product to ship at each 

frequency such that ( T )C I  is minimized.  The solution methodology is branch-and-bound; the 

authors provide dominance rules to improve performance.  Bertazzi, et al. (2000) is the only 

paper in this deterministic-demand subgroup.   
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3.2.2  Models with Stochastic Demand 

Kumar, et al. (1995) and Reiman, et al. (1999) both consider a single-product JTIP in which a 

single vehicle (capacitated in Reiman, et al., but uncapacitated in Kumar, et al.) travels along a 

predetermined static route, allocating its entire inventory to the retailers before returning empty 

(i.e., the depot holds no inventory).  Both static allocation and dynamic allocation are considered.  

The objective in Kumar, et al. is to minimize the expected inventory (i.e., holding and 

backordering) cost at the retailers, they define the “risk-pooling incentive” provided by dynamic 

allocation (i.e., the reduction in system demand variance) and estimate the cost savings of using 

dynamic allocation versus static allocation using simulation.   The objective in Reiman, et al. is 

to minimize the long-run inventory and transportation cost.  Kumar, et al. use dynamic 

programming, while Reiman, et al. use queueing control theory and heavy-traffic analysis.  

Although these authors model the problem in much different ways, they both show, under 

appropriate assumptions, that the optimal system replenishment policy is a base-stock policy.  

Also, they both conclude that dynamic allocation significantly outperforms static allocation. 

Berman and Larson (2001) also consider a stochastic single-depot, single-product, multi-

retailer JTIP with static routing and dynamic allocation.  The given transportation policy is that a 

capacitated vehicle leaves the depot filled to capacity and visits all the customers along a 

predetermined route.  The (t T )C I  considered by Berman and Larson consists of four parts: 

costs of earliness, lateness, product shortfall, and returning to the depot nonempty.  Specifically, 

each customer has a given “re-service” point, which corresponds to each retailer’s desired 

inventory level just before a delivery is to be made.  The system incurs an earliness (lateness) 

cost if the vehicle makes its delivery when inventory is above (below) this level.  A product 

shortfall cost is incurred if the vehicle leaves the customer’s tank less than full.  The chosen 
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inventory policy, I, is assumed to be of the following form: While visiting customer j, the vehicle 

either fills up customer j to capacity or allocates an amount, determined by dynamic 

programming, whichever is less.  They show how to use stochastic dynamic programming to 

solve the problem. 

Bassok and Ernst (1995) is the only model in this subgroup to consider multiple products.  

Similar to the 3 models above, the transportation policy being considered is that a capacitated 

vehicle loaded with multiple products visits all the customers along a predetermined sequence.  

Instead of minimizing (t T )C I  in (1), however, they formulate a profit maximization problem, 

decomposing it into two subproblems: a Product Allocation Problem (PAP) and a Space 

Allocation Problem (SAP).  The PAP determines the quantity of each product to allocate to each 

retailer and the SAP determines the allocation of the limited vehicle space to different products 

(i.e., system replenishment).  Their algorithm starts by solving the PAP with the objective of 

identifying the minimum quantity of each product i to have on board when the vehicle gets to 

retailer j, using standard dynamic programming.  In solving the SAP, the solution obtained in the 

PAP is used, i.e., they assume that all the products are allocated to the retailers optimally.  Since 

the SAP is concave in the spaces allocated to each product, given the constraints defined by the 

vehicle capacity, their method determines the space for each product while maximizing the 

potential profit. 

Finally, Dror and Trudeau (1996) consider both deterministic and stochastic demand.  They 

examine the distribution of a single product over an annual horizon from the perspective of the 

net present-value of cash flow.  Transportation policy, T, is restricted to direct delivery.  Their 

analysis is based on the single-customer case.  Their numerical study demonstrates that it would 

be advantageous for the decision maker to set deliveries for a large percentage of the retailers 
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based on the present value of cash flow.  In particular, given stochastic customer demands, 

deliveries based on the cash-flow consideration will tend to reduce the number of stockouts as 

compared to those based on the operational efficiency consideration (i.e., to maximize the 

average number of units delivered per hour).   

3.3  Joint Transportation-Inventory Policy 

The models reviewed in this section consider transportation and inventory as joint policy 

variables.  Various methodologies have been used on the general JTIP, among them integer 

programming, stochastic programming, and Markov-decision analysis.  For example, among the 

mathematical-programming models, Bell, et al. (1983), Chien, et al. (1989), and Gaur and Fisher 

(2002) formulate the JTIP as a mixed-integer program; Campbell, et al. (1997) propose two 

approaches: integer programming for a deterministic JTIP and dynamic programming for a 

stochastic JTIP.  However, regardless of the method proposed, optimal joint transportation-

inventory policies are very difficult to find.  Hence, heuristics are proposed in all these models.  

Twenty-four of the 49 papers reviewed are in this group.  Some of the models in this group 

assume deterministic demand (Section 4.3.1); others, stochastic demand (Section 4.3.2). 

3.3.1  Models with Deterministic Demand 

The most popular methodology used in this subgroup of JTIPs is partitioning.  Under a “Fixed 

Partitioning” (FP) policy, sets of retailers (not necessarily disjoint), often called regions, are 

created that, together, include all the retailers.  Once the routes and the assignment of the 

vehicles to the routes are determined, each region is then served separately and independently 

from all other regions.  If a retailer belongs to more than one region, then some fraction of its 

demand is satisfied by each.  Typically, each time one of the retailers in a given region is visited, 
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all other retailers in that region are also visited.  The following provides an overview of these FP 

models. 

In the single-product, single depot, multi-retailer deterministic model studied by Anily and 

Federgruen (1990, 1993) and Anily (1994), T is restricted to the FP policies proposed by Anily 

and Federgruen (1986).  The objective is to determine a long-term joint transportation-inventory 

policy that enables all retailers to meet their demands while minimizing system-wide long-run 

average transportation and inventory costs.  One assumption in all three models is that the 

demand rate iµ  faced by retailer i is a multiple of some common quantity µ .  A demand point is 

defined as a point facing a demand rate of µ .  Hence, a retailer with demand of µK is treated as 

K separate demand points, and the partition is over these demand points.  

Anily and Federgruen (1993) extends the analysis in Anily and Federgruen (1990) to the case 

in which the depot can hold inventory.  A Combined Routing and Replenishment Strategies 

Algorithm (CRRSA*), similar to the CRRSA in Anily and Federgruen (1990), is proposed.  

CRRSA* differs from CRRSA in that the interval between two visits to a region is rounded to a 

power-of-two series of some prespecified interval.  Anily (1994) considers the case where 

holding costs are retailer dependent, and develops a regional partitioning heuristic, which is 

asymptotically optimal in the set of FP policies.  Anily shows that the optimal solution can be 

bounded from below by a special partitioning problem with closed-form solution.   

Chan, et al. (1998) characterize the asymptotic effectiveness of the class of FP policies and 

the class of so-called Zero-Inventory Ordering (ZIO) policies, under which a retailer is 

replenished if and only if its inventory is zero.  Their analysis is motivated by the observation 

that the class of FP policies is a subset of the class of ZIO policies.  Worst-case studies as well as 

probabilistic bounds under a variety of probabilistic assumptions are provided. 
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Anily and Federgruen (1993) and Herer and Roundy (1997) examine a model in which 

inventory can be held at the depot.  Both papers also adopt a power-of-two heuristic in 

determining the retailers’ reorder intervals.  Anily and Federgruen show that the gap between the 

costs of the power-of-two heuristic and a lower bound for the minimum cost is at most 6% for a 

sufficiently large numbers of retailers (i.e., ), and that this gap is typically small even for 

problems with a moderate number of retailers.  Herer and Roundy propose heuristics for finding 

the power-of-two reorder intervals and present a dynamic-programming algorithm to compute 

the optimal power-of-two reorder intervals for single-depot multi-retailer supply chains with 

arbitrary monotone nonnegative order costs. 

N → ∞

Gaur and Fisher (2002) examine a periodic-review model of a supermarket chain using FP.  

Their objective is to determine a weekly delivery schedule that specifies the times when each 

store should be replenished and the routes for the capacitated vehicles that visit these stores at a 

minimum transportation cost.  The original problem is decomposed into a set-partitioning 

problem on the stores and a shortest-path problem for each set.  They show that the optimal FP 

policy has at most two deliveries per route, and is polynomially solvable using a generalized 

minimum weight-matching approach.  The implementation at a supermarket chain is described.  

First-year distribution-cost savings of about 4% are reported. 

Viswanathan and Mathur (1997) examine a multi-product model.  They propose a power-of-

two heuristic algorithm, which generates stationary joint transportation-inventory policies for the 

cases with capacitated vehicle(s) or not.  In their M-product, N-retailer problem, Viswanathan 

and Mathur define an item as a product at a specific retailer, so there are NM items in total.  By 

determining the reorder interval and quantity for each item, the original problem is transformed 

into a single-product, MN-retailer problem. 
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Finally, Chan and Simchi-Levi (1998) consider a multi-depot model.  In their three-level 

supply chain, a fixed number of depots order from a single outside supplier, and supply several 

geographically-dispersed retailers.  The objective is to develop a joint transportation-inventory 

policy to minimize long-run average transportation and inventory costs.  They first develop a 

lower bound on C I , the long-run average total cost, then, propose a Zero-Inventory 

Ordering policy and characterize the effectiveness of this policy relative to all other feasible 

policies.  They show that, in a policy that minimizes C I , each depot receives fully-loaded 

vehicles from the outside supplier but never holds inventory; i.e., each depot serves only as a 

coordinator of the frequency, time and sizes of deliveries to the retailers. 

( , )T

( , )T

Other papers in this subgroup include Bell, et al. (1983), Blumenfeld, et al. (1985), Chien, et 

al. (1989), Christiansen (1999), Christiansen and Nygreen (1998a,b), and Fumero and Vercellis 

(1999). 

3.3.2  Models with Stochastic Demand 

Federgruen and Zipkin (1984) published the first JTIP model in this subgroup.  They solve a 

single-day problem and show how some well-known interchange heuristics for the deterministic 

VRP can be modified to handle the stochastic JTIP.  In their model, the quantity of product to be 

delivered to each retailer is determined on the basis of the level of its inventory.  Then, the 

retailers are assigned to the vehicles and the routes are determined.  They model the stochastic 

JTIP as a nonlinear integer program.  The key idea behind their solution methodology is to 

decompose the original problem into an inventory-allocation problem (using static allocation) 

and a VRP for each vehicle.  Their algorithm constructs an initial feasible solution and iteratively 

improves it by exchanging customers between routes. 
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In Golden, et al. (1984), Ω  is restricted to the set of inventory policies that maintain an 

“adequate” level of inventory for all customers, and π is restricted to dynamic-routing policies.  

Retailer selection is determined by computing the “urgency” (i.e., the ratio of tank size to tank 

inventory) of each customer, excluding customers whose “urgency” is below a threshold.  Their 

heuristic can be summarized as follows: Initially, a time limit for the total travel time, say T , 

is set to the number of vehicles multiplied by the length of a day.  A large route to all the retailers 

being visited is constructed iteratively.  Customers are added, one at a time, according to the 

highest ratio of urgency to extra time required to visit this customer.  Customers are added until 

 is reached or there are no more customers left.  The final route is partitioned into a set of 

feasible subroutes by requiring that each customer be filled to capacity whenever it is visited.  If 

this turns out to be impossible, the heuristic can be re-run with a smaller value for T . 

MAX

MAXT

MAX

Kleywegt, et al. (2002a) formulate an IRP with direct deliveries as a Markov-decision 

process and propose a dynamic-programming approach.  The original problem is decomposed 

into individual retailer subproblems.  Kleywegt, et al. (2002b) extend both the formulation and 

the approach to handle multiple deliveries per trip.  The retailers are grouped into regions to form 

subproblems.  Kleywegt, et al. (2002b) derive a result similar to Gaur and Fisher (2002): if each 

subset has at most two retailers, then, it can be solved in polynomial time, by solving a 

maximum-weight perfect matching problem. 

Adelman (2001) considers a multi-item inventory-control problem with joint replenishment 

costs.  In his model, a dispatcher periodically monitors inventories for a set of items, where an 

item may represent a product, a location, or a product-location pair depending on the business 

setting (note: when the item represents location, it is an JTIP).  Objective (1) is decomposed into 

a collection of functions separated by item.  His method first decides which retailers to visit, then, 
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partition these retailers into disjoint subsets.  Static allocation is used.  Adelman also formulates 

the problem as a Markov-decision process and studies a price-directed control policy.  Rather 

than considering a myopic policy that minimizes only the costs related to the current 

replenishment, Adelman approximates the future using dual prices from linear-programming 

relaxations.  Numerical studies show that the price-directed policy performs better than the 

myopic policy. 

Park, et al. (2002) extend the single-product, single-vehicle, single-depot, N-retailer 

stochastic-demand JTIP model considered by Kumar, et al. (1995).  In considering dynamic 

allocation of vehicle inventory, Kumar, et al. assume a given static route and focus attention on 

optimal allocation and system-replenishment policies, while Park, et al. consider dynamic 

routing and dynamic allocation.  In particular, for a “symmetric” system (in which all retailers 

are equidistant from the depot and one another), Park, et al. show that a least-inventory-first 

transportation policy is optimal (i.e., visit next the retailer with the smallest net inventory).  They 

determine dynamic allocation and system inventory-replenishments that minimize the system-

wide expected costs between successive depot replenishments.   

Other JTIP models in this subgroup are Qu, et al. (1999) and Cetinkaya and Lee (2000). 

3.4  Others 

Some JTIP models do not fall into any of the categories above, among them the Strategic 

Inventory Routing Problem (SIRP), the problems considering the effectiveness of direct delivery, 

the delivery-dispatching problem considered by Minkoff (1993), and the location-inventory 

problem considered by Shen, et al. (2003).  Seven of the 49 papers reviewed are in this group. 
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The label “Strategic Inventory-Routing Problem” (SIRP), which deals with resource planning 

decisions; i.e., minimizing the size (or cost) of the vehicle fleet required, was first introduced by 

Webb and Larson (1995), although the idea had been proposed earlier by Larson (1988).  Both 

papers consider the SIRP in a stochastic setting.  Larson (1988) offers a two-step heuristic 

procedure to solve the SIRP: (i) define an approximate deterministic SIRP, then, (ii) solve this 

problem to find the fleet size.  Webb and Larson (1995) address the case in which the set of 

retailers being visited on each route can change over time (i.e., dynamic vehicle assignment).  To 

determine the fleet size, period (defined as the number of routes taken by the vehicles between 

two consecutive deliveries to retailer i) and phase (i.e., the number of routes between the 

beginning of some predetermined routes and the first route visiting retailer i) are introduced as 

additional decision variables to generalize the approach used in Larson (1988) for the SIRP.  

Their computational results show that the period-phase approach is cost saving (reflected in 

average vehicle requirement) in most of their test problems. 

Gallego and Simchi-Levi (1990), Jones and Qian (1997), Barnes-Schuster and Bassok (1997) 

develop models to consider the effectiveness of direct delivery (i.e., the ratio of the long-run 

average cost of direct delivery to a lower bound on the long-run average cost over all possible 

policies).   

Both Gallego & Simchi-Levi (1990) and Jones & Qian (1997) assume that each retailer faces 

a constant, retailer-specific, daily demand.  The depot holds no inventory.  Holding cost and 

fixed ordering cost are charged only at the retailers.  Gallego and Simchi-Levi evaluate the long-

run effectiveness of direct delivery and study conditions under which direct delivery is an 

efficient policy.  Lower and upper bounds on C I  are derived.  They show that direct 

delivery is within 6% of optimality under certain restricted parameter settings (i.e., when the 

( , )T
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economic lot size of each retailer is at least 71% of the vehicle capacity).  This result provides 

useful guidelines for determining when to consider more complex transportation policies. Jones 

and Qian (1997) extend Gallego and Simchi-Levi by considering a setup cost consisting of two 

parts, the fixed cost associated with each vehicle trip, which accounts for the driver expense, 

maintenance cost, etc.; and the fixed cost for each vehicle stop, which accounts for unloading 

and storing costs at the retailer.  (Such cost assumptions have also been used by Anily and 

Federgruen, 1990 and Burns, et al., 1985.) Jones and Qian show that the fully-loaded direct-

delivery policy is optimal among all possible transportation-inventory policies if the vehicle 

capacity is less than the minimum retailer economic lot size. 

Barnes-Schuster and Bassok (1997) examine when it will be effective for the depot to use 

direct delivery as its transportation policy and a myopic base-stock policy (rounded to full 

vehicle loads) as its inventory policy.  They provide a lower bound on the expected long-run 

average cost as a sum of the expected inventory holding cost and the expected transportation cost.  

They conclude that from a practical point of view, in situations where demand distributions are 

normal or approximately normal, and vehicle capacities are close to the mean demand, then, very 

good results can be expected from direct delivery.  

To summarize, Gallego and Simchi-Levi (1990), Barnes-Schuster and Bassok (1997), Jones 

and Qian (1997) present very similar results on the effectiveness of direct delivery: when the 

vehicle capacity is either close to the mean of customer demand or small enough (i.e., less than 

the minimum retailer economic lot size), direct delivery would be a simple, but powerful, 

transportation policy to follow. 

Minkoff (1993) considers a Delivery Dispatching Problem (DDP) with a given set of 

itineraries, which are characterized by a list of customers to be visited and the quantity to be 
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delivered to each customer.  The objective is to dispatch the fleet of vehicles to replenish 

inventory at these retailers while minimizing the long-run average transportation and inventory 

costs.  They model the problem as a Markov-decision process, and give decomposition heuristic 

with performance bounds.  Inspired by Minkoff, we suggest further improvements on the JTIP 

might be obtained by incorporating the DDP as a subproblem of the general JTIP, or including 

the costs related to vehicle rental, dispatching, etc. while solving  (1) - (3).  

Shen, et al. (2003) consider a joint location-inventory problem.  They observe that risk-

pooling benefits (i.e., cost savings) might be achieved by allowing some retailers to serve as 

Distribution Centers (DCs).  A DC receives shipments from the depot and distributes directly to 

the retailers within its jurisdiction.  Given a set of retailers, their problem is to determine how 

many DCs to locate, and where to locate them.  They also determine the level of safety stock to 

maintain at the DCs and the retailers to minimize total location, shipment, and inventory costs, 

while ensuring a specified level of service.  The problem is formulated as two different integer-

programming models: a location-allocation risk-pooling model and a set-covering model for 

determining the partition.  Their computational results suggest that as the nonlinear safety stock 

costs increase relative to the other costs (or equivalently as the specified service level increases), 

the problem becomes harder to solve.  Also, as these costs increase, the number of DCs located 

decreases. 

4.  Directions for Future Research 

In this section we suggest several possible directions for future research.  

Multi-Product JTIP.  Most JTIP literature is concerned with the distribution of a single product.  

Only 5 of the 49 papers surveyed here consider multi-product case:  Bassok and Ernst (1995), 
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Viswanathan and Mathur (1997), Fumero and Vercellis (1999), and Bertazzi et al (2000, 2002). 

Of these 5 papers, Bassok and Ernst (1995) consider stochastic multi-product demand; the other 

4, deterministic demand.  On the other hand, many real-world distribution scenarios involve 

multiple products.  The fundamental difficulty posed by multiple products, of course, involves 

the allocation of vehicle capacity to different products.  

We suggest two heuristic approaches in solving (1) – (3) for multiple products-: (i) load each 

vehicle with exactly one product, thus, transforming the M-product JTIP into M single-product 

JTIPs (ii) decompose the original problem into three subproblems, a product-allocation problem 

(to determine the delivery quantities for each product to each retailer), a vehicle-routing problem 

(to determine the routes and assign the vehicles to different routes), and a capacity-allocation 

problem (to load different products on to the vehicles). 

An associated problem, even given a limited number of uncapacitated vehicles, involves the 

choice of routes.  For example, the inventory policy for one product might favor one particular 

transportation policy while the inventory policy for another product on the same vehicle might 

favor a different transportation policy. 

Split-Delivery.  As noted in Dror and Trudeau (1989), split-delivery (i.e., at least one retailer is 

assigned to two or more vehicles with each vehicle delivering a portion of that retailer’s order or 

demand) can save money.  They study a relaxed version of the VRP in which a delivery to a 

retailer can be split among any number of vehicles.  Their numerical studies demonstrate the 

potential for cost savings (e.g., in terms of distance traveled and the number of vehicles deployed) 

through split-deliveries.  Under the assumption that demand at each retailer is deterministic and 

an integer multiple of some common factor, as in Anily and Federgruen (1990), etc., a fixed 
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partitioning approach is appropriate.  In Fumero and Vercellis (1999), different vehicles are 

permitted to deliver to the same customer in the same time period.  

Split-delivery brings significant additional complexity when demand is stochastic.  Under a 

fixed-partitioning strategy, when a single retailer is represented by several demand points, 

capturing shortages at that retailers by summing shortages at its demand points seems 

inappropriate.  Further, if a given retailer is restocked on several routes, whether under static or 

dynamic allocation, the allocation problem now spans multiple routes.  Specifically, an 

allocation on one route, even to a retailer that is only on that one route, will affect the allocations 

on another route, if these two routes share at least one retailer. 

However, due to the potential cost savings, split-delivery is still an area that deserves some 

consideration.  We think that the JTIP with split-deliveries can be approached from two 

perspectives: statically and dynamically.  Under a static delivery-splitting policy, deliveries are 

split when the vehicle(s) leaves the depot, and fixed thereafter.  Under a dynamic delivery-

splitting policy, whether the delivery to some retailer i should be split is not determined until 

some vehicle arrives at that retailer.  Researchers might also focus on evaluating the “goodness” 

of split-delivery (i.e., how much cost could be saved), determining the necessary conditions to 

assure that split-delivery would be efficient and cost effective, and developing good splitting 

heuristics. 

Multi-Depot JTIP.  Few models address the case in which there are multiple places where the 

vehicle(s) can reload and/or originate from/terminate at.  Bard, et al. (1998) and Jaillet, et al. 

(2002) consider the IRP with single depot and satellite facilities.  In their models, vehicle(s) must 

originate from and terminate at the depot, but can reload at any of the satellite facilities while 

visiting the retailers.  In the three-level distribution system (vendor-depot-retailer) considered by 
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Chan and Simchi-Levi (1998), multiple depots are allowed and vehicles can originate from and 

terminate at any of these depots.  In many real-world distribution systems, multiple depots (or 

distribution centers) are allowed, which brings more flexibility and convenience. 

We see two ways in solving problem (1)- (3) with multiple depots: a fixed-destination policy 

and a flexible-destination policy.  Under the fixed-destination policy, a vehicle must depart from 

and terminate at the same depot. By incorporating the FP policy, the retailers can be divided into 

regions, each assigned to one depot; thus, the original problem is decomposed into several 

independent single-depot, multi-retailer JTIPs.  Under the flexible-destination policy, a vehicle 

departs from some depot and can return to any other depots.  We also want to mention that by 

combining with the multi-product concern, another possible area for future research would be to 

develop the necessary steps for a joint approach to an extended (i.e., multi-product, multi-depot) 

JTIP. 

System Replenishment.  By system replenishment, we mean the replenishment policy for the 

depot (i.e., how frequently the depot should order; and what order quantity should be employed).  

Seven of the 49 papers address system replenishment:   Burns, et al. (1985), Bassok and Ernst 

(1995), Kumar, et al. (1995), Herer and Roundy (1997), Reiman, et al. (1999), Cetinkaya and 

Lee (2000), and Berman and Larson (2001).  Kumar, et al. (1995) show that under both static- 

and dynamic- allocation policies, the optimal myopic system replenishment policy is a base-

stock policy.  Bassok and Ernst (1995) examine system replenishment by solving the problem of 

loading a capacitated vehicle with multiple products.  Most of the JTIP literature ignores system 

replenishment by assuming that the depot orders with an outside supplier with unlimited supply 

and instant delivery.  However, when the depot holds inventory or leadtimes to the depot are 
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involved (as considered by Herer and Roundy, 1997), then, when and how much to order for the 

depot must be taken into consideration.   

5.  Conclusion 

This article surveyed a class of problems characterized by the simultaneous presence of 

transportation and inventory concerns within the framework of a distribution system.  The 

purpose was to provide some links and relationships within the contemporary JTIP literature.  

We first formulated the general optimization problem in the JTIPs and; then, proposed a detailed 

classification on the JTIPs.  Papers were grouped and reviewed according to the three classes of 

decision variables, i.e., transportation policy with given inventory policy, inventory policy with 

given transportation policy, and joint transportation-inventory policy.  Relevant JTIP models 

were compared and summarized.  Based on the classification and outline of the contemporary 

JTIP literature, problems deserving future research effort as well as possible ways to consider 

them were presented.  
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